Development/Plasticity/Repair In Vivo Voltage-Sensitive Dye Imaging in Adult Mice Reveals That Somatosensory Maps Lost to Stroke Are Replaced over Weeks by New Structural and Functional Circuits with Prolonged Modes of Activation within Both the Peri-Infarct Zone and Distant Sites
نویسندگان
چکیده
After brain damage such as stroke, topographically organized sensory and motor cortical representations remap onto adjacent surviving tissues. It is conceivable that cortical remapping is accomplished by changes in the temporal precision of sensory processing and regional connectivity in the cortex. To understand how the adult cortex remaps and processes sensory signals during stroke recovery, we performed in vivo imaging of sensory-evoked changes in membrane potential, as well as multiphoton imaging of dendrite structure and tract tracing. In control mice, forelimb stimulation evoked a brief depolarization in forelimb cortex that quickly propagated to, and dissipated within, adjacent motor/hindlimb areas ( 100 ms). One week after forelimb cortex stroke, the cortex was virtually unresponsive to tactile forelimb stimulation. After 8 weeks recovery, forelimb-evoked depolarizations reemerged with a characteristic pattern in which responses began within surviving portions of forelimb cortex ( 20 ms after stimulation) and then spread horizontally into neighboring peri-infarct motor/hindlimb areas in which depolarization persisted 300 – 400% longer than controls. These uncharacteristically prolonged responses were not limited to the remapped peri-infarct zone and included distant posteromedial retrosplenial cortex, millimeters from the stroke. Structurally, the remapped peri-infarct area selectively exhibited high levels of dendritic spine turnover, shared more connections with retrosplenial cortex and striatum, and lost inputs from lateral somatosensory cortical regions. Our findings demonstrate that sensory remapping during stroke recovery is accompanied by the development of prolonged sensory responses and new structural circuits in both the peri-infarct zone as well as more distant sites.
منابع مشابه
Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke.
Recovery of function after stroke is thought to be dependent on the reorganization of adjacent, surviving areas of the brain. Macroscopic imaging studies (functional magnetic resonance imaging, optical imaging) have shown that peri-infarct regions adopt new functional roles to compensate for damage caused by stroke. To better understand the process by which these regions reorganize, we used in ...
متن کاملDevelopment/Plasticity/Repair In Vivo Calcium Imaging Reveals Functional Rewiring of Single Somatosensory Neurons after Stroke
Functional mapping and microstimulation studies suggest that recovery after stroke damage can be attributed to surviving brain regions taking on the functional roles of lost tissues. Although this model is well supported by data, it is not clear how activity in single neurons is altered in relation to cortical functional maps. It is conceivable that individual surviving neurons could adopt new ...
متن کاملNeural Plasticity Following Ischemia
Neural plasticity refers to the ability of one’s brain to change its structure and/or function in response to changes in behavior, environment, and neural processes. When a person suffers an ischemic brain injury, it often leads to hemisyndrome with motor and sensory deficits in the arm, leg, and face of one side. This article discusses the various ways that the existing network can be restruct...
متن کاملIn vivo calcium imaging reveals functional rewiring of single somatosensory neurons after stroke.
Functional mapping and microstimulation studies suggest that recovery after stroke damage can be attributed to surviving brain regions taking on the functional roles of lost tissues. Although this model is well supported by data, it is not clear how activity in single neurons is altered in relation to cortical functional maps. It is conceivable that individual surviving neurons could adopt new ...
متن کاملOptogenetic mapping after stroke reveals network-wide scaling of functional connections and heterogeneous recovery of the peri-infarct.
We used arbitrary point channelrhodopsin-2 (ChR2) stimulation and wide-scale voltage sensitive dye (VSD) imaging in mice to map altered cortical connectivity at 1 and 8 weeks after a targeted cortical stroke. Network analysis based on optogenetic stimulation revealed a symmetrical sham network with distinct sensorimotor and association groupings. This symmetry was disrupted after stroke: at 1 w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009